these ought to be relatively rare, by Zsigmondy. However, in that theorem, we are not told the exponent on the new prime. So, for example, $3^5 - 1 = 2 \cdot 11^2.$ The new prime, $11,$ is squared, and we find
$$ (3^2 - 1)(3^5 - 1) = 44^2 $$
Usually, a new prime is has exponent $1.$
Made a list, my program was able to completely factor and show the new prime(s) until $n$ became a prime over 35... I could do those in gp-pari
Sat Jul 2 17:56:42 PDT 2022
1 2 = 2
2 4 = 2^2
3 13 = 13
4 5 = 5
5 121 = 11^2
6 7 = 7
7 1093 = 1093
8 41 = 41
9 757 = 757
10 61 = 61
11 88573 = 23 3851
12 73 = 73
13 797161 = 797161
14 547 = 547
15 4561 = 4561
16 3281 = 17 193
17 64570081 = 1871 34511
18 703 = 19 37
19 581130733 = 1597 363889
20 1181 = 1181
21 368089 = 368089
22 44287 = 67 661
23 47071589413 = 47 1001523179
24 6481 = 6481
25 3501192601 = 8951 391151
26 398581 = 398581
27 387440173 = 109 433 8209
28 478297 = 29 16493
29 34315188682441 = 59 28537 20381027
30 8401 = 31 271
31 308836698141973 = 683 102673 4404047
32 21523361 = 21523361
33 2413941289 = 2413941289
34 32285041 = 103 307 1021
35 189150889201 = 71 2664097031
36 530713 = 530713
37 225141952945498681 = cdot mbox{BIG} = 13097927 17189128703
38 290565367 = 2851 101917
39 15040635637 = 313 6553 7333
40 42521761 = 42521761
41 18236498188585393201 = 83 cdot mbox{BIG} = 83 2526913 86950696619
42 97567 = 43 2269
43 164128483697268538813 = 431 cdot mbox{BIG} = 431 380808546861411923
44 3138105961 = 5501 570461
45 271983020401 = 181 1621 927001