2

This inequality can be generalized to n terms $a_1,a_2,...,a_n$, and here I first work on the basic case, which contain only $a_1,a_2$ terms:

$\frac{a_1a_2}{(1-a_1)(1-a_2)}\le\frac{1}{2^3}\frac{a_1+a_2}{1-(a_1+a_2)}$ where $a_1>0, a_2>0, 0<a_1+a_2<1$,

I try a series expansion but seems not work. Next, I try to prove

$\frac{2a_1a_2}{a_1+a_2}\le\frac{1}{2^2}\frac{(1-a_1)(1-a_2)}{1-(a_1+a_2)}$,

for LHS, I use the Harmonic Mean < GM <AM, but how to estimate the RHS, any hint will be appreciated, Thank you.

Update: find the proof here: Prove that $\tfrac{a_1a_2\cdots a_n(1-a_1-a_2-\cdots-a_n)}{(a_1+a_2+\cdots+a_n)(1-a_1)\cdots(1-a_n)} \leq \frac{1}{n^{n+1}}.$

MathFail
  • 21,128
  • For this case $n=2$: $$LHS = \frac{1}{\frac{1-a_1-a_2}{a_1a_2} + 1} \le \frac{1}{\frac{1-a_1-a_2}{(a_1 + a_2)^2/4} + 1}.$$ It suffices to prove that $\frac{x}{8(1 - x)} \ge \frac{x^2}{4(1-x) + x^2}$ for all $0 < x < 1$ which is true. – River Li Jun 17 '22 at 15:40

1 Answers1

0

Partial answer

Using Ky-Fan inequality with two unknows we have for $a,x>0$ and $0<x,a<1/2$ :

$$\frac{xa}{\left(1-x\right)\left(1-a\right)}\leq \left(\frac{x+a}{2-x-a}\right)^{2}$$

Now showing :

$$\left(\frac{x+a}{2-x-a}\right)^{2}\leq \frac{\frac{1}{8}\left(x+a\right)}{1-\left(x+a\right)}$$

As the kids play .

For a reference see wiki about Ky-Fan inequality https://en.wikipedia.org/wiki/Ky_Fan_inequality

  • but it might not satisfy both less than 1/2. For example, a=0.8, x=0.1 – MathFail Jun 17 '22 at 15:13
  • please close this post, find the proof here: https://math.stackexchange.com/questions/1593170/prove-that-tfraca-1a-2-cdots-a-n1-a-1-a-2-cdots-a-na-1a-2-cdotsa-n?rq=1 – MathFail Jun 17 '22 at 15:26