This inequality can be generalized to n terms $a_1,a_2,...,a_n$, and here I first work on the basic case, which contain only $a_1,a_2$ terms:
$\frac{a_1a_2}{(1-a_1)(1-a_2)}\le\frac{1}{2^3}\frac{a_1+a_2}{1-(a_1+a_2)}$ where $a_1>0, a_2>0, 0<a_1+a_2<1$,
I try a series expansion but seems not work. Next, I try to prove
$\frac{2a_1a_2}{a_1+a_2}\le\frac{1}{2^2}\frac{(1-a_1)(1-a_2)}{1-(a_1+a_2)}$,
for LHS, I use the Harmonic Mean < GM <AM, but how to estimate the RHS, any hint will be appreciated, Thank you.
Update: find the proof here: Prove that $\tfrac{a_1a_2\cdots a_n(1-a_1-a_2-\cdots-a_n)}{(a_1+a_2+\cdots+a_n)(1-a_1)\cdots(1-a_n)} \leq \frac{1}{n^{n+1}}.$