How to calculate ${e^{At}}$ for a matrix $A = \left( {\begin{array}{*{20}{c}} i&j&k\\ i&j&k\\ i&j&k \end{array}} \right)$ knowing that $i+j+k=0$
answer:
if you calculate $A^2$ you get
$${A^2} = \left( {\begin{array}{*{20}{c}} {i\left( {j + k + i} \right)}&{j\left( {i + j + k} \right)}&{k\left( {i + j + k} \right)}\\ {i\left( {j + k + i} \right)}&{j\left( {i + j + k} \right)}&{k\left( {i + j + k} \right)}\\ {i\left( {j + k + i} \right)}&{j\left( {i + j + k} \right)}&{k\left( {i + j + k} \right)} \end{array}} \right) = 0$$ This is a nilpotent matrix with order 2 and hence easy to get the exponential.