I have the following recurrence equation: \begin{align*} Z_{n+1}(x, y) = -2i\frac{\partial Z_n}{\partial x}(x, y) - Z_{n-1}(x, y), \end{align*} with the following conditions: \begin{equation} \begin{cases} Z_0(x, y) = 2\pi J_0\left(\sqrt{x^2 + y^2}\right)e^{id}, \\ Z_1(x, y) = \frac{1}{i}\frac{\partial Z_0}{\partial x}(x, y) + \frac{\partial Z_0}{\partial y}(x, y), \end{cases} \end{equation} where $J_0$ is the Bessel function of the first kind of order $0$ and $d$ is a real number.
I would like to get a closed form of $Z_n$ involving Bessel functions, but I really don't know if there is a way to do it.
Remark: This question is a follow-up of another one, for more context please refer to this post where you can see the development to obtain the recurrence equation.
Edit: following @Sal advice
I am not the best user of Fourier transform so bare with me if there is any big mistakes. Defining the fourier transform of $Z_n$ as: \begin{equation*} \tilde{Z}_n(u, v) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} Z_n(x,y) e^{-i (xu+yv)} dx dy \end{equation*} and taking the Fourier transform of my recurrence relation, holds: \begin{equation*} \tilde{Z}_{n+1}(u, v) = 2u\tilde{Z}_n(u, v) - \tilde{Z}_{n-1}(u, v). \end{equation*}
Using the following characteristic equation: \begin{equation*} \lambda^2 - 2u\lambda + 1 = 0, \end{equation*} we can compute two solutions: \begin{equation} \begin{cases} \lambda_1 = u - \sqrt{u^2 - 1}, \\ \lambda_2 = u + \sqrt{u^2 - 1}. \end{cases} \end{equation} Using all that, we have: \begin{equation*} \tilde{Z}_n(u, v) = a\lambda_1^n + b\lambda_2^n, \end{equation*} where the coefficients $a$ and $b$ are given by the conditions: \begin{equation} \begin{cases} \tilde{Z}_0 = a+b, \\ \tilde{Z}_1 = a\lambda_1 + b\lambda_2. \end{cases} \Rightarrow \begin{cases} a=\frac{\lambda_2\tilde{Z}_0 - \tilde{Z}_1}{\lambda_2-\lambda_1}, \\ b=\frac{\tilde{Z}_1 - \lambda_1\tilde{Z}_0}{\lambda_2-\lambda_1}. \end{cases} \end{equation} Finally, we can write that: \begin{align*} \tilde{Z}_n(u, v) &= \frac{1}{2\sqrt{u^2 - 1}}\left[(\lambda_2\tilde{Z}_0 - \tilde{Z}_1)\lambda_1^n + (\tilde{Z}_1 - \lambda_1\tilde{Z}_0)\lambda_2^n\right] \end{align*}
Edit 2:
We can do some more simplifications by remarking that: \begin{equation*} \tilde{Z}_1 = u\tilde{Z}_0 + iv\tilde{Z}_0, \end{equation*} such that: \begin{equation} \begin{cases} \lambda_2\tilde{Z}_0 - \tilde{Z}_1 = \left(\sqrt{u^2-1} - iv\right)\tilde{Z}_0 \\ \tilde{Z}_1 - \lambda_1\tilde{Z}_0 = \left(iv + \sqrt{u^2-1}\right)\tilde{Z}_0 \end{cases} \end{equation}
Finally, we can write: \begin{equation*} \tilde{Z}_n(u, v) = \tilde{Z}_0\frac{\lambda_1^n + \lambda_2^n}{2} - \tilde{Z}_0\frac{iv}{\sqrt{u^2 - 1}}\frac{\lambda_1^n - \lambda_2^n}{2} \end{equation*} which, by using the Binomial theorem, can be put into the form: \begin{equation*} \tilde{Z}_n(u, v) = \tilde{Z}_0\sum_{k=0}^{n} \begin{pmatrix} n\\ k \end{pmatrix} u^{n-k}\left(u^2 - 1\right)^\frac{k}{2}\left(\frac{1+(-1)^k}{2}+\frac{1-(-1)^k}{2}\frac{iv}{\sqrt{u^2-1}}\right) \end{equation*}
Edit 3:
Following the computation done in this post, we can find that: \begin{equation} \tilde{Z}_0(u, v) = 2\pi e^{id} \delta(\sqrt{u^2 + v^2}-1), \\ \end{equation}
Now, my problem is to compute the inverse Fourier transform to get $Z_n$.