Let $\alpha_1, \ldots, \alpha_n > 0$ be positive real numbers and $\omega_1, \ldots, \omega_n \in \mathbb{S}^1$ some complex numbers of modulus one. My question is when exactly do there exist some other $\omega_1', \ldots, \omega_n' \in \mathbb{S}^1$ such that $$\alpha_1\omega_1 + \cdots + \alpha_n\omega_n = \alpha_1\omega_1' + \cdots + \alpha_n\omega_n'$$ and $(\omega_1, \ldots, \omega_n) \ne (\omega_1', \ldots, \omega_n')$?
For example, if $\omega_1 = \cdots = \omega_n$, then clearly such $\omega'_i$ do not exist since we would have $$|\alpha_1\omega_1' + \cdots + \alpha_n\omega_n'| = |\alpha_1\omega_1 + \cdots + \alpha_n\omega_n| = \alpha_1 + \cdots + \alpha_n = |\alpha_1\omega_1'| + \cdots + |\alpha_n\omega_n'|$$ and hence $\omega_1' = \cdots = \omega_n'$ so it follows that $(\omega_1, \ldots, \omega_n) = (\omega_1', \ldots, \omega_n')$.
On the other hand, if $$\alpha_1\omega_1 + \cdots + \alpha_n\omega_n = 0$$ then for any $\omega \in \mathbb{S}^1, \omega \ne 1$ we have $$\alpha_1\omega_1\omega + \cdots + \alpha_n\omega_n\omega = 0 = \alpha_1\omega_1 + \cdots + \alpha_n\omega_n$$ and clearly $(\omega_1,\ldots, \omega_n) \ne (\omega_1\omega,\ldots, \omega_n\omega).$
My conjecture is that such $\omega_1', \ldots, \omega_n' \in \mathbb{S}^1$ will exist if and only if $\omega_1 = \cdots = \omega_n$ is false, but I'm not able to prove such a result. I'm assuming the continuity of the function $$(\omega_1,\ldots, \omega_n) \mapsto \alpha_1\omega_1 + \cdots + \alpha_n\omega_n$$ will somehow come into play.