Let $M_1,M_2$ be metric spaces such that $M_2$ is complete. Let $f$ be a uniformly continuous function from a subset $X$ of $M_1$ into $M_2$. Suppose that $\overline{X}=M_1$. Prove that $f$ has a unique uniformly continuous extension from $M_1$ into $M_2$ (that is, prove that there exists a unique uniformly continuous function $g$ from $M_1$ into $M_2$ such that $g|X=f$.)
I'm not sure where to start on this one... how can I extend a uniformly continuous function from $X$ to $M_1$?