Consider the stochastic exponential: $F[M] = e^{M(t)-\frac{1}{2}\langle M\rangle(t)}$ for an local martingale $M$.
Define: $$M:= \log(L(0)) + \int_0^* \frac{1}{L} dL $$ where $L$ is a strictly positive local martingale.
How can I apply Ito's lemma to deduce $L= F[M]$ ?
Idea:
$F[M](t)$ yields: $e^{ log(L_0) + \int_0^t \frac{1}{L}(s) dL(s) -0.5\int_0^t \frac{1}{L^2}(s) dL(s) } $
The exponent is just $log(L(t))$. This can be shown by applying Ito's lemma on $L$ with function $f(x) =\log x$
Is this the right way to proof my desired result.