Moment generating function for a random variable X is given by M(t)=$E[e^{tX}]$ for some −h < t < h.
Why does −h < t < h ?.
I am not able to understand the importance and meaning of parameter t in the definition of moment generating function. What does it signify?
I guess understanding this below question might help me in understanding the concept of parameter t in moment generating function. So please explain that also.
Let X be a random variable with mgf M(t), −h < t < h.
Prove that
(a) $P(X ≥ a) ≤ e^{−at}M(t) , 0 < t < h$
and that
(b) $P(X ≤ a) ≤ e^{−at}M(t) , − h < t < 0 $
(I am able to derive part(a) using markov's inequality but I dont understand for (a) to be true , why $ 0 < t < h$ ?)
I have proved (a) and (b) which dont have answer yet:-
(a) $P[X\geq a]$
$=P[tX \geq ta]$ -> t is positive
$=P[e^{tX} \geq e^{at}]$
$ \leq \frac{E[e^{tX}]}{e^{at}}$ -> markov's inequality
(b) $P[X\gt a]$
$=P[tX \lt ta]$ ->t is negative
$=P[e^{tX} \lt e^{at}]$
$=1-P[e^{tX} \geq e^{at}]$
$ \geq 1- \frac{E[e^{tX}]}{e^{at}}$ -> by markov's inequality
$P[X\gt a] \geq 1-\frac{E[e^{tX}]}{e^{at}}$
$=>\frac{E[e^{tX}]}{e^{at}} \geq 1-P[X\gt a]$
$=>\frac{E[e^{tX}]}{e^{at}} \geq P[X\leq a]$
– Ayush Aug 20 '21 at 12:52