Minimize the function
$$ Z = \frac{1}{2}x_1² + x_2² +x_3²$$ subject to
$$x_1 - x_2 = 0$$ and $$x_1 + x_2 +x_3 =1$$
Minimize the function
$$ Z = \frac{1}{2}x_1² + x_2² +x_3²$$ subject to
$$x_1 - x_2 = 0$$ and $$x_1 + x_2 +x_3 =1$$
Using equations $2$ and $3,$ solve for $x_1,x_2$ in terms of $x_3$. $$x_1=x_2=\dfrac{1-x_3}{2}$$Substituting in $1^\text{st}$ equation, we get a quadratic equation in terms of $x_3$.$$ Z=\dfrac{1}{4}(7x_3^2-6x_3+3)$$ Hence the minimum value exists at $x=-\dfrac{b}{2a}=\dfrac{3}{7}$ and the minimum value is $-\dfrac{D}{4a}=\dfrac{3}{7}$ or simply solve for $f'(x)=0$ and substitute the value of $x$ in $Z$ as $f''(x)=\dfrac{7}{2}$ which is clearly positive so we would obtain a minima (required).