Is $\mathbb Z _p$ flat $\mathbb Z$-module?
$\mathbb Z/n \mathbb Z $ is not flat over $\mathbb Z$, so I guess it's inverse limit $\mathbb Z /p^m\mathbb Z$ is not flat. But I'm not confident.
Thank you in advance.
Is $\mathbb Z _p$ flat $\mathbb Z$-module?
$\mathbb Z/n \mathbb Z $ is not flat over $\mathbb Z$, so I guess it's inverse limit $\mathbb Z /p^m\mathbb Z$ is not flat. But I'm not confident.
Thank you in advance.