Question: Prove that $(x^n\ln x)^{(n)} = n!(\ln x+1+\frac 12 + ... + \frac 1n)$
What I tried: Using Leibnitz's theorem, with $f=x^n$ and $g=\ln x$. So $$f^{(j)}=n\cdots(n-j+1)x^{n-j} , g^{(j)}=(-1)^{j+1} \dfrac 1{x^{n-j}}$$ But somehow I get stuck on the way...