If $S_0=1$ and $S_n=1-e^{-S_{n-1}}$ then prove that $0\le S_n\le1$ and $S_n$ converges.
My Solution: $S_0=1, \ S_n=1-e^{-S_{n-1}} \implies S_1=1-{1\over e}<S_0\\ Now, S_{n+1}-S_n=1-e^{-S_{n}}-(1-e^{-S_{n-1}})=e^{-S_{n-1}}-e^{-S_{n}}<0 \ \\ [Since, S_1<S_0 \implies e^{S_1}<e^{S_0} \implies e^{-S_0}-e^{-S_1}<0]\\ Hence, S_{n+1}<S_n\\ \text{Therefore, it's monotonic decreasing for all }n\\\text{How can I show this is of positive terms?} \\\text{Please help, Thanks in advance. }$