Consider the sequence $f_n(x)=\frac{x}{1+nx^2}$ on $x\in \mathbb{R}$. Also consider $f'_n(x)=\frac{1-nx^2}{(1+nx^2)^2}$ on $x \in \mathbb{R}$.
I want to check their uniform convergence.
Convergence of $f_n$:
$f_n \to 0$ pointwise on $\mathbb{R}$.
$f_n(x) \ge 0$ for all $x \in \mathbb{R}^+$ and $f_n$ is an odd function so obtaining a global maximum in $[0, \infty)$ will provide use with an upperbound of $|f_n(x)|$
$f_n'(x)=0 \iff x=0 \ \text{or} \ x=\frac{1}{\sqrt n}$
At $x=0$ $f_n(x)$ is the global minimum so $f_n(x)$ attains its global maximum at $x=\frac{1}{\sqrt n}$ in $\mathbb{R}$
$\implies M_n:=\operatorname{lub}\{|f_n(x)-0|:x \in \mathbb{R}\}=\frac{2}{\sqrt n} \to 0$
$\implies f_n \to 0$ uniformly in $\mathbb{R}$.
Convergence of $f'_n$:
$f'_n(x) \to \begin{cases} 0 & x \ne 0 \\ 1 & x=0 \end{cases}$ pointwise in $\mathbb{R}$ which tells $f'_n$ cannot be uniformly convergent in $\mathbb{R}$ as the limit function is not continuous.
Critical points of $f'_n(x)$ are $x=0$ and $x=\sqrt \frac{3}{2n} \to 0$
$\implies f'_n$ is monotone and continuous in [1,b] for any $b>1$ for sufficiently large $n$ and converges pointwise to $0$.
I want to ensure $f'_n$ converges uniformly to $0$ on $[1,b]$. How should I proceed?