4

Hi I have a 3 by 3 matrix of the following form: $$ A=\begin{bmatrix} a & b & 0 \\ -b & a & c \\ 0 & -c & d \\ \end{bmatrix} $$ $$a,b,c,d\in\Re $$ I'm trying to explore special relations between powers of this matrix of the form: $$ A^n = \alpha A^m $$ or even for the simpler case where $$a=d=0$$ The motivation is to use one of the closed form special cases for the matrix exponential, I didn't find anything so far from exploring the literature, and I wonder if there is a systematic efficient way to go about it?

Thanks!

1 Answers1

2

This answer is restricted to the case $a=d=0$. Then one can check that $$A^3=(b^2+c^2)A$$ So writing $\beta:=\sqrt{b^2+c^2}$, then \begin{align} e^A&=I+A+\frac{A^2}{2!}+\cdots+\frac{A^n}{n!}+\cdots\\ &=I+\left(1+\frac{\beta^2}{3!}+\frac{\beta^4}{5!}+\cdots\right)A+\left(\frac{1}{2!}+\frac{\beta^2}{4!}+\cdots\right)A^2\\ &=I+\frac{\sinh\beta}{\beta}A + \frac{\cosh\beta-1}{\beta^2}A^2\\ &=I+uA+vA^2\\ &=\begin{pmatrix}1-vb^2&ub&vbc\\-ub&1-\beta^2v&uc\\vbc&-uc&1-vc^2\end{pmatrix} \end{align}

Chrystomath
  • 10,798