Given the Banach space $l_p = \left\{f\in R^n : \|f\| \leq \infty\right\}$ for $1\leq p \leq \infty$, we define the following norms
- $\|f\|_p = \left(\displaystyle\sum_{j=0}^{\infty} |f_j|^p\,w_j\right)^{\frac{1}{p}},\quad p\geq 1,\,w_j>0,\,\forall j\in\mathbb N$
- $\|f\|_{\infty} = \underset{j\in\mathbb N}{\sup} |f_j|$
I want to prove that the spaces $l_1$ and $l_{\infty}$ are not strictly convex.
For $l_1$, I'm trying to find two different sequences $\left\{a_n\right\}_{n=1}^{\infty}$ and $\left\{b_n\right\}_{n=1}^{\infty}$ such that
$$\displaystyle\sum_{j=0}^{\infty} |a_n| + \displaystyle\sum_{j=0}^{\infty} |b_n| = \displaystyle\sum_{j=0}^{\infty} |a_n+b_n|$$
Respectively, for $l_{\infty}$, I have to find two sequences such that
$$\underset{j\in\mathbb N}{\sup} |a_j|+ \underset{j\in\mathbb N}{\sup} |b_j| = \underset{j\in\mathbb N}{\sup} |a_j+b_j|$$
are these argument correct?
If they are, then I think that I can prove it for $l_{\infty}$. One just has to take the sequences:
$$\left\{a_n\right\}_{n=1}^{\infty}=\left\{\frac{1}{2^{n}}\right\}_{n=1}^{\infty} $$ $$\left\{b_n\right\}_{n=1}^{\infty}=\left\{\frac{1}{2n}\right\}_{n=1}^{\infty}$$
Since then we have:
$$\underset{j\in\mathbb N}{\sup} |a_j|+ \underset{j\in\mathbb N}{\sup} |b_j| = \frac{1}{2} + \frac{1}{2} = 1 = \underset{j\in\mathbb N}{\sup} |a_j+b_j|$$