I working through the question in the link and i am stuck on something:
How to solve integration with Dirac Delta function?
How does one solve the equation: $\int^{-5/6}_{11/6}(-\frac{1}{2}-3u)\delta (u)du$
My solution:
$\int^{-5/6}_{11/6}(-\frac{1}{2}-3u)\delta (u)du =$
$\int^{-5/6}_{11/6}(-\frac{1}{2})\delta (u)du-\int^{-5/6}_{11/6}(-3u)\delta (u)du=$
$-\frac{1}{2}\int^{-5/6}_{11/6}\delta (u)du-3\int^{-5/6}_{11/6}u\delta (u)du=$
$-1/2-3\int^{-5/6}_{11/6}u\delta (u)du $
I dont't know how to solve this equation: $-3\int^{-5/6}_{11/6}u\delta (u)du$
Edit:
Would anyone mind explaining why: $\int^{-5/6}_{11/6}u\delta (u)du=0$. Or in wider sence why $\int^{\infty}_{-\infty}x\delta (x)dx=0$