Let $H$ be a Hilbert space and $T\in B(H)$ be a bounded linear operator on $H$, then $T=I$ $\Longleftrightarrow$ $\langle\psi,T\psi\rangle=1$ for every $\|\psi\|=1$.
It is easy to examine the "$\Longrightarrow$". But how to show the opposite implication?