$\mathbb{C}P^0$ is a point and $\mathbb{C}P^1\cong S^2$ is the Riemann sphere. In general $\mathbb{C}P^n$ is the quotient of $S^{2n+1}\subseteq\mathbb{C}^{n+1}$ by the free action of $S^1\subseteq\mathbb{C}\setminus0$. The projection $$S^{2n+1}\rightarrow \mathbb{C}P^n$$
is a locally trivial fibration whose fibre is $S^1$. From this we get a long exact sequence of homotopy groups
$$\dots\rightarrow\pi_kS^1\rightarrow \pi_kS^{2n+1}\rightarrow \pi_k\mathbb{C}P^n\rightarrow\pi_{k-1}S^1\rightarrow\dots.$$
Since
$$\pi_kS^1\cong\begin{cases}\mathbb{Z}&k=1\\0&\text{otherwise}\end{cases}$$
we get by exactness that
$$\pi_k\mathbb{C}P^n\cong\begin{cases}\mathbb{Z}&k=2\\\pi_kS^{2n+1}&\text{otherwise}\end{cases}$$
if $n\geq1$. In particular
$$\pi_2\mathbb{C}P^n\cong\mathbb{Z}$$
so if $\mathbb{C}P^n$ is homotopy equivalent to a sphere, then that sphere must be $S^2$. But also
$$\pi_{2n+1}\mathbb{C}P^n\cong\mathbb{Z}$$
so if $n\geq2$, then $\mathbb{C}P^n$ cannot be homotopy equivalent to $S^2$. In particular $\mathbb{C}P^n$ cannot be homeomorphic to any sphere if $n\geq2$.
Edit: I suppose I should add that it is known that $\pi_nS^n\cong\mathbb{Z}$ for all $n\geq1$, that $\pi_nS^{n+k}=0$ for all $n$ and all $k\geq1$, and that if $k\geq1$, then $\pi_{n+k}S^n$ is torsion if $n$ is odd, or if $n$ is even and $k\neq 2n-1$.