0

$$ \begin{aligned} \text { If } \quad a &=1+\frac{x^{3}}{3 !}+\frac{x^{6}}{6 !}+\ldots \\ & b=x+\frac{x^{4}}{4 !}+\frac{x^{7}}{7 !}+\ldots \\ & c=\frac{x^{2}}{2 !}+\frac{x^{5}}{5 !}+\frac{x^{8}}{8 !}+\ldots \end{aligned} $$ then show that $a^{3}+b^{3}+c^{3}-3 a b c=1$

My Aprroach:

$$\begin{array}{l} a=1+\frac{x^{3}}{3 !}+\frac{x^{2}}{6 !} \\ b=x+\frac{x^{4}}{4 !}+\frac{x^{7}}{7 !} \\ \begin{array}{ll} c=\frac{x^{2}}{2 !}+\frac{x^{5}}{5 !}+\frac{x^{8}}{8 !} \\ \text { Now, } & a+b+c=e^{x} \\ & \frac{1}{2}(a+b+c)\left\{(a-b)^{2}+(b-c)^{2}+(c-a)^{2}\right. \\ & \frac{1}{2} e^{x}({........}) \end{array} \end{array}$$

Further I am not getting no clue!

0 Answers0