Let $\alpha$ and $\beta$ be vectors in $\mathbb{R}^n$, and $\beta^tx>0$ for all $x$ in $\mathbb{R}^n$, the Hessian Matrix is $\{H(x)\}_{ij}=\frac{2}{(\beta^t x)^3}\left((\alpha^t x)^2(\beta_i\beta_j)+(\beta^t x)^2(\alpha_i\alpha_j)-(\alpha^t x)(\beta^t x)(\beta_i\alpha_j+\alpha_i\beta_j)\right)$, where $\alpha^t$, $\beta^t$ are the transpose of $\alpha$ and $\beta$.
Prove the Hessian Matrix $H(x)$ is positive semidefinite.