I really need with this one:
Let $$\begin{array}{c} Q,R\in\mathbb{R}^{n},Q,R\succ0\\ f:\mathbb{R}^{n}\times\mathbb{R}^{n}\longrightarrow\mathbb{R},g:\mathbb{R}^{n}\longrightarrow\mathbb{R}\\ f\left(\boldsymbol{x},\boldsymbol{y}\right)=\left(\frac{1}{2}\boldsymbol{x}^{T}Q\boldsymbol{x}\right)\left(\frac{1}{2}\boldsymbol{y}^{T}R\boldsymbol{y}\right)\\ g\left(\boldsymbol{x}\right)=f\left(\boldsymbol{x},\boldsymbol{x}\right)=\left(\frac{1}{2}\boldsymbol{x}^{T}Q\boldsymbol{x}\right)\left(\frac{1}{2}\boldsymbol{x}^{T}R\boldsymbol{x}\right) \end{array}$$ does $f(x,y)$ has to be convex if it's given that $g(x)$ is not convex?
as follow to my other question here about the Gradient and Hessian of $g\left(\boldsymbol{x}\right)$ We know that $$\begin{array}{c} \nabla g\left(\boldsymbol{x}\right)=\left(\frac{1}{2}\boldsymbol{x}^{T}R\boldsymbol{x}\right)Q\boldsymbol{x}+\left(\frac{1}{2}\boldsymbol{x}^{T}Q\boldsymbol{x}\right)R\boldsymbol{x}\\ \nabla^{2}g\left(\boldsymbol{x}\right)=R\boldsymbol{x}\boldsymbol{x}^{T}Q+\left(\frac{1}{2}\boldsymbol{x}^{T}R\boldsymbol{x}\right)\cdot Q+Q\boldsymbol{x}\boldsymbol{x}^{T}R+\left(\frac{1}{2}\boldsymbol{x}^{T}Q\boldsymbol{x}\right)\cdot R \end{array}$$
I tried so far to calculate the hessian of $f(x,y)$ in oreder to check if the hessian is psd: it's became messy but I found it : $$\nabla^{2}f\left(\boldsymbol{x}\boldsymbol{y}\right)=\left(\begin{array}{cc} \frac{1}{2}\left(\boldsymbol{y}^{T}R\boldsymbol{y}\right)Q & \frac{1}{4}\left(Q\boldsymbol{x}\boldsymbol{y}^{T}R\right)\\ \frac{1}{4}\left(R\boldsymbol{y}\boldsymbol{x}^{T}Q\right) & \frac{1}{2}\left(\boldsymbol{x}^{T}Q\boldsymbol{x}\right)R \end{array}\right)\in\mathbb{R}^{2n\times2n}$$ but I dont really sure how to continue from here.(don't really sure if i can find if the hessian of $f$ is psd)
thanks!