-1

Define $$a_k=\cos\frac{2k\pi}{n}-2+i\sin\frac{2k\pi}{n}$$ How can I approach this product? $$a_1 a_2 \cdots a_n$$ I tried to investigate if one of terms is $0$, as it is a product, but no.

Any ideas?


I have already calculated this sum using the Euler formula. $$a_1+a_2+\cdots +a_n,\;n>1$$

(original problem images: $a_k$, product, sum)

Blue
  • 75,673
Akhtubir
  • 309
  • 1
  • 10

1 Answers1

2

So, $a_k;1\le k \le n$

are the roots of $$(x+2)^n=1\iff x^n+\cdots+2^n-1=0$$

Using Vieta's formula $$\prod_{k=1}^n a_k=(-1)^n\cdot\dfrac{2^n-1}1$$