If $\left(\Omega_0,\mathcal{A}_0\right)$ is a Borel space, the set $B:=\left\{\left(\omega,\omega\right)\space:\mid\space\omega\in\Omega_0\right\}$ is measurable in $\mathcal{A}_0\otimes\mathcal{A}_0$. Equivalently, if $f,g:\left(\Omega_1,\mathcal{A}_1\right)\rightarrow\left(\Omega_0,\mathcal{A}_0\right)$ are measurable, the set $\left\{f=g\right\}$ is measurable in $\mathcal{A}_1$. But this need not hold if $\left(\Omega_0,\mathcal{A}_0\right)$ is not a Borel space.
Question #1 What conditions on $\left(\Omega_0,\mathcal{A}_0\right)$ guarantee the measurability of $B$? In particular, if $\mathcal{A}_0$ contains all the singletons of $\Omega_0$, will $B$ be measurable necessarily?
More generally, it can be shown (e.g. by using projections with the equivalent formulation indicated above) that if $\left(\Omega_i,\mathcal{A}_i\right)$ are Borel spaces for $i\in\mathbb{N}$, then for all $n\in\mathbb{N}$, the sets $\left\{\left(\omega,\omega\right)\space:\mid\space\omega=\left(\omega_1,\dots,\omega_n\right)\in\times_{i=1}^n\Omega_i\right\}$ are measurable in $\mathcal{A}^{(n)}\otimes\mathcal{A}^{(n)}$ with $\mathcal{A}^{(n)}:=\otimes_{i=1}^n\mathcal{A}_i$ and the set $\left\{\left(\omega,\omega\right)\space:\mid\space\omega\in\times_{i=1}^\infty\Omega_i\right\}$ is measurable in $\mathcal{A}^{\left(\infty\right)}\otimes\mathcal{A}^{\left(\infty\right)}$ with $\mathcal{A}^{\left(\infty\right)}:=\otimes_{i=1}^\infty\mathcal{A}_i$.
Question #2 Does this result extend to the case when $\mathbb{N}$ is substituted by an arbitrary uncountable index set $\mathcal{I}$ (but the $\left(\Omega_i,\mathcal{A}_i\right)$ are still Borel spaces)?
Question #3 Does the equivalence of the two formulations mentioned in the first paragraph still hold when the index set is uncountable? In other words, is it possible for $B=\left\{\left(\omega,\omega\right)\space:\mid\space\omega\in\times_{i\in\mathcal{I}}\Omega_i\right\}$ to be non-$\mathcal{A}^{\left(\mathcal{I}\right)}\otimes\mathcal{A}^{\left(\mathcal{I}\right)}$-measurable (with $\mathcal{A}^{\left(\mathcal{I}\right)}:=\otimes_{i\in\mathcal{I}}\mathcal{A}_i$) even as the set $\left\{f=g\right\}$ is measurable for all measurable $f,g:\left(\Omega,\mathcal{A}\right)\rightarrow\left(\times_{i\in\mathcal{I}}\Omega_i,\otimes_{i\in\mathcal{I}}\mathcal{A}_i\right)$?