We have, for a positive random variable X:
$$ M_X(t) = E \left[\text{e}^{tX}\right] = \sum_{k=0}^{\infty} \frac{t^k}{k!} E \left[ X^k\right] $$
Then, the pdf is given by:
$$ f_X(x) = \frac{1}{2\pi i} \lim_{T\to\infty} \int_{0}^{\gamma + iT} \text{e}^{-tx} M_X(t) dt = \sum_{k=0}^{\infty}\frac{E \left[ X^k\right]}{2\pi i} \lim_{T\to\infty} \int_{0}^{\gamma + iT} \text{e}^{-tx} \frac{t^k}{k!} dt $$
This is correct? If it is, how can I calculate the inverse laplace transform of $t^k$? I just found the solution when k is non-integer and negative. Thanks!