How to solve for x from$$ \frac{1}{\sqrt{1-x^2/m^2}}=\frac{1}{\sqrt{1-y^2/m^2}} \cdot\frac{1}{\sqrt{1-z^2/m^2}}\cdot(1+\dfrac{yz}{m^2}) $$ to $$ x = \frac{y+z}{1+yz/m^2}$$
There is also a tip, which says $$\dfrac{x^2}{m^2}=\frac{\left(\frac{1}{\sqrt{1-x^2/m^2}}\right)^2-1}{\left(\frac{1}{\sqrt{1-x^2/m^2}}\right)^2}$$