Put each equation in self -adjoint form
$x^{2}{y}''-x{y}'+\lambda y=0$
If I want to put it in the self-attached form of Sturm Liouvulle, I first do this:
$x{y}''-{y}'+\frac{\lambda }{x}y=0$
$e^{-\int \frac{dx}{x}}$
$e^{-ln(x)}=\frac{1}{x}$
$\frac{1}{x}\left [x{y}''-{y}'+\frac{\lambda }{x}y \right ]=0$
${y}''-\frac{1}{x}{y}'+\frac{\lambda }{x^{2}}y=0$
but I don't know if what I did is good, you can help me