In order to construct an example of Herbrand quotient, I want to know the cohomology group of $H^i(\mathbb{Z}/p\mathbb{Z}, \mathbb{Z})$ and $H^i(\mathbb{Z}/p\mathbb{Z}, \mathbb{Z}/p\mathbb{Z})$ for $i = 0, 1$.
When $i = 0$, I know $H^0(G, M) = M^G$.
Therefore, I guess $H^0(\mathbb{Z}/p\mathbb{Z}, \mathbb{Z}) = \{x \in \mathbb{Z} \mid \sigma + x = x, x \in \mathbb{Z}/p\mathbb{Z}\} = p\mathbb{Z}$, and $H^0(\mathbb{Z}/p\mathbb{Z}, \mathbb{Z}/p\mathbb{Z}) = \{x \in \mathbb{Z}/p\mathbb{Z} \mid \sigma + x = x, x \in \mathbb{Z}/p\mathbb{Z}\} = p\mathbb{Z}$. Is this right?
But I cannot calculate the case of $i = 1$.
I would appreciate if you could help me calculating $H^1(\mathbb{Z}/p\mathbb{Z}, \mathbb{Z}/p\mathbb{Z})$ and $H^1(\mathbb{Z}/p\mathbb{Z}, \mathbb{Z})$. Thank you.