I've tried by writing it as $\tan(m x) \cot(n x)$, but I couldn't really continue from there.
Asked
Active
Viewed 659 times
1
-
use L'Hopital's rule. the answer is $\frac{m}{n}$ – K.K.McDonald Dec 25 '19 at 22:10
5 Answers
10
Hint: ${{\tan(mx)}\over{\tan(nx)}}=m{{\sin(mx)}\over{mx}}{1\over n}{{(nx)}\over{\sin(nx)}}{{\cos(nx)}\over{\cos(mx)}}$
so the limit is ${m\over n}$.
Bernard
- 175,478
Tsemo Aristide
- 87,475
0
$$\tan(mx) \cot(nx)=\frac{\cos(nx)\sin(mx)}{\cos(mx)\sin(nx)}$$
First-order Taylor expansion around zero gives $$\cos(nx)=1+O(x^2)$$$$\cos(mx)=1+O(x^2)$$$$\sin(nx)=nx+O(x^3)$$$$\sin(mx)=mx+O(x^3)$$
therefore $$\lim_{x \rightarrow 0}{\tan(mx) \cot(nx)}=\lim_{x \rightarrow 0}\frac{mx}{nx}=\frac{m}{n}$$
0
Hint: Prove $$\lim\limits_{x \to 0} \frac{\tan(x)}{x} =1$$ using $$\lim\limits_{x \to 0} \frac{\sin(x)}{x} =1$$
nonuser
- 90,026
0
The shortest way, as often, uses asymptotic equivalents: near $0$, $\tan u\sim u $, hence $$\frac{\tan mx}{\tan nx}\sim_0\frac{mx}{nx}=\frac mn.$$
Bernard
- 175,478