If $ x_1, x_2, ...., x_ {2019} $ are roots of $ P (x) = x ^ {2019} + 2019x-1 $, determine the value of$$\sum_{i=1}^{2019}\frac{x_i}{x_i-1}$$
Solution: By Vieta, $x_1x_2..x_{2019}=1$,$\sum{x_1x_2..x_{2018}=2019}$, and the rest is $0$. Thus $$\sum_{i=1}^{2019}\frac{x_i}{x_i-1}=\frac{2019x_1x_2..x_{2019}-2018\sum{x_1x_2..x_{2018}}+2017\sum{x_1x_2..x_{2017}}-..}{x_1x_2..x_{2019}-\sum{x_1x_2..x_{2018}} +\sum{x_1x_2..x_{2017}} - .. -1}=\frac{2019-2018(2019)}{1-2019-1}=2017$$
The only thing I understood was $ x_1x_2..x_ {2019} = 1 $. Does this product sum of $ x_1 $ up to $ x_ {2018} $ mean what?