Show that $$\lim_{x\to 0} \frac{\tan x\tan^{-1}x-x^2}{x^6}=\frac{2}{9}.$$
Proceed:
$$\tan x\tan^{-1}x=(x+\dfrac{1}{3}x^3+\dfrac{2}{15}x^5+O(x^7)) (x-\frac{1}{3}x^3+\frac{1}{5}x^5+O(x^7))=x^2+\frac{2x^6}{9}+O(x^8)$$
Thus,
$$\lim\limits_{x\to 0} \dfrac{\tan x\tan^{-1}x-x^2}{x^6} =\lim\limits_{x\to 0}\dfrac1{x^6} \left(\frac{2x^6}{9}+O(x^8)\right)=\dfrac{2}{9}$$ Where is the problem?