The convolution inequalities can be rephrased as
\begin{align*}
\left(\int_{0}^{\infty}\left(\int_{0}^{x}|f(t)|dt\right)^{p}x^{-b-1}dx\right)^{1/p}\leq\dfrac{p}{b}\left(\int_{0}^{\infty}|f(t)|^{p}t^{p-b-1}dt\right)^{1/p},
\end{align*}
and
\begin{align*}
\left(\int_{0}^{\infty}\left(\int_{x}^{\infty}|f(t)|dt\right)^{p}x^{b-1}dx\right)^{1/p}\leq\dfrac{p}{b}\left(\int_{0}^{\infty}|f(t)|^{p}t^{p+b-1}dt\right)^{1/p}
\end{align*}
for $0<b<\infty$ and $1\leq p<\infty$.
For the first one, consider $h(x)=|f(x)|x^{1-b/p}$ and $k(x)=x^{-b/p}\chi_{[1,\infty)}(x)$ and the convolution under the multiplicative group $(0,\infty)$ with respect to the measure $d(\cdot)/(\cdot)$, we have
\begin{align*}
h\ast k(x)&=\int_{0}^{\infty}h\left(\dfrac{x}{t}\right)k(t)\dfrac{dt}{t}\\
&=\int_{0}^{\infty}\left|f\left(\dfrac{x}{t}\right)\right|\left(\dfrac{x}{t}\right)^{1-b/p}t^{-b/p}\chi_{[1,\infty)}(t)\dfrac{dt}{t}\\
&=\int_{1}^{\infty}\left|f\left(\dfrac{x}{t}\right)\right|\left(\dfrac{x}{t}\right)^{1-b/p}t^{-b/p}\dfrac{dt}{t}\\
&=\int_{0}^{x}|f(u)|u^{1-b/p}\left(\dfrac{x}{u}\right)^{-b/p}\dfrac{du}{u}\\
&=\int_{0}^{x}|f(u)|x^{-b/p}du.
\end{align*}
We also have
\begin{align*}
\|h\ast k\|_{L^{p}}&=\left(\int_{0}^{\infty}(h\ast k)(x)^{p}\dfrac{dx}{x}\right)^{1/p}\\
&=\left(\int_{0}^{\infty}\left(\int_{0}^{x}|f(u)|\dfrac{du}{u}\right)^{p}x^{-b}\dfrac{dx}{x}\right)^{1/p},
\end{align*}
which is exactly the left-sided of the first inequality.
Now we exploit to the convolution inequality $\|h\ast k\|_{L^{p}}\leq\|h\|_{L^{p}}\|k\|_{L^{1}}$, so that
\begin{align*}
\|k\|_{L^{1}}&=\int_{0}^{\infty}k(t)\dfrac{dt}{t}\\
&=\int_{0}^{\infty}t^{-b/p}\chi_{[1,\infty)}(t)\dfrac{dt}{t}\\
&=\int_{1}^{\infty}t^{-b/p-1}dt\\
&=\dfrac{p}{b},
\end{align*}
plugging this to the convolution inequality, the first inequality follows.
For the second inequality, perform the similar trick to the functions $h(x)=|f(x)|x^{1+b/p}$ and $k(x)=x^{b/p}\chi_{(0,1]}$.
These are included in Loukas Grafakos book Classical Fourier Analysis as exercises with tips, how does he manage to see such the tricks work is somewhat magical, I have no answer.
Edit:
For the second inequality, we have
\begin{align*}
\|k\|_{L^{1}}=\int_{0}^{\infty}t^{b/p}\chi_{(0,1]}(t)\dfrac{dt}{t}=\int_{0}^{1}t^{b/p-1}dt=\dfrac{p}{b},
\end{align*}
so the constant term in the right-sided inequality is obtained.
We also have
\begin{align*}
h\ast k(x)&=\int_{0}^{\infty}\left|f\left(\dfrac{x}{t}\right)\right|\left(\dfrac{x}{t}\right)^{1+b/p}t^{b/p}\chi_{(0,1]}(t)\dfrac{dt}{t}\\
&=\int_{0}^{1}\left|f\left(\dfrac{x}{t}\right)\right|\left(\dfrac{x}{t}\right)^{1+b/p}t^{b/p}\dfrac{dt}{t}\\
&=\int_{x}^{\infty}\left|f\left(u\right)\right|u^{1+b/p}\left(\dfrac{x}{u}\right)^{b/p}\dfrac{du}{u}\\
&=\int_{x}^{\infty}\left|f\left(u\right)\right|x^{b/p}\dfrac{du}{u},
\end{align*}
so
\begin{align*}
\|h\ast k\|_{L^{p}}&=\left(\int_{0}^{\infty}\left(\int_{x}^{\infty}|f(u)|\dfrac{du}{u}\right)^{p}x^{b}\dfrac{dx}{x}\right)^{1/p}\\
&=\left(\int_{0}^{\infty}\left(\int_{x}^{\infty}|f(u)|\dfrac{du}{u}\right)^{p}x^{b-1}dx\right)^{1/p}.
\end{align*}