If $\alpha$, $\beta$, $\gamma$ and $\delta$ be the roots of the polynomial $x^4+px^3+qx^2+rx+s$, show that $$(1+\alpha^2)(1+\beta^2)(1+\gamma^2)(1+\delta^2)=(1-q+s)^2+(p-r)^2.$$
I have tried putting
\begin{align}P(1)&=(\alpha-1)(\beta-1)(\gamma-1)(\delta-1)=1+p+q+r+s\\P(-1)&=(\alpha+1)(\beta+1)(\gamma+1)(\delta+1)=1-p+q-r+s.\end{align}
Then \begin{align}P(1)P(-1)&=(\alpha^2-1)(\beta^2-1)(\gamma^2-1)(\delta^2-1)\\&=(1+p+q+r+s)(1-p+q-r+s)=(1+q+s)^2-(p+r)^2\end{align}
Somehow it does not match the statement given.