Background. Per Stone's theorem, a one-parameter unitary matrix group $U_t$ corresponds to a Hermitian matrix $H$:
$$U_t=e^{iHt}$$
Example. The group of unitary matrices
$$U_t= \left( \begin{matrix} 1&0&0&0 \\ 0&1&0&0 \\ 0&0&\cos t&i\sin t \\ 0&0&i\sin t&\cos t \\ \end{matrix} \right) $$
corresponds to the matrix
$$H= \left( \begin{matrix} 0&0&0&0 \\ 0&0&0&0 \\ 0&0&0&1 \\ 0&0&1&0 \\ \end{matrix} \right) $$
and then for $t=\pi/2$ we have
$$ U_{\pi/2}= \left( \begin{matrix} 1&0&0&0 \\ 0&1&0&0 \\ 0&0&0&i \\ 0&0&i&0 \\ \end{matrix} \right) $$
Question. For any given unitary matrix $U$, does it belong to a one-parameter group, such that Stone's theorem applies?
I've been trying to find $H$ for the matrix below, but haven't yet managed to:
$$ U_{?}= \left( \begin{matrix} 1&0&0&0 \\ 0&1&0&0 \\ 0&0&0&1 \\ 0&0&1&0 \\ \end{matrix} \right) $$
Note that may not be relevant: it's unitary, though with $det~U_?=-1$.