Prove $$\frac{\Gamma(\frac{7}{8})}{\Gamma(\frac{3}{8})}=\frac{(1+\sqrt{2})\Gamma(\frac{5}{8})}{\Gamma(\frac{1}{8})}$$
We know that :
$\Gamma(x+\frac{1}{2})=\frac{(2x)!\sqrt{π}}{4^{x}x!}$
So : $\Gamma(\frac{7}{8})=\Gamma(\frac{1}{2}+\frac{3}{8})$ !!
Prove $$\frac{\Gamma(\frac{7}{8})}{\Gamma(\frac{3}{8})}=\frac{(1+\sqrt{2})\Gamma(\frac{5}{8})}{\Gamma(\frac{1}{8})}$$
We know that :
$\Gamma(x+\frac{1}{2})=\frac{(2x)!\sqrt{π}}{4^{x}x!}$
So : $\Gamma(\frac{7}{8})=\Gamma(\frac{1}{2}+\frac{3}{8})$ !!
By the reflection formula, if $z\notin\mathbb{Z}$, $$\Gamma \left({z}\right) \Gamma \left({1 - z}\right) = \dfrac \pi {\sin \left({\pi z}\right)}$$ so you can evaluate $\Gamma(\frac{1}{8})\Gamma(\frac{7}{8})$ and $\Gamma(\frac{3}{8}) \Gamma(\frac{5}{8})$ and verify that $$\frac{\Gamma(\frac{1}{8})\Gamma(\frac{7}{8})}{\Gamma(\frac{3}{8})\Gamma(\frac{5}{8})}=1+\sqrt{2}.$$
P.S. See also Evaluate $\sin(\frac{\pi}{8})$ and $\cos(\frac{\pi}{8})$ or the Silver ratio (due to user 493905).