Is well known that $$\psi(x)-\psi(-x)=-\pi \cot(\pi x) - \frac{1}{x}.$$ I am wondering if a similar property holds for the following function, $$D_{\beta,\gamma}(x) = \psi(\beta x)-\psi(-\gamma x),\ \beta,\gamma \in {\mathbb{Z}_{>0}},$$ i.e. if $D_{\beta,\gamma}(x) =\text{a periodic function} + O\Big(\frac{1}{x}\Big)?$ Any ideas?
Edit.
It may be useful the following,
- $D_{\beta,\gamma}(x)=(\beta+\gamma)x\sum_{n\geq 0}\frac{1}{(n+x\beta)(n-\gamma x)}.$
- $\beta\not= \gamma$ since if $\beta=\gamma$ the function is periodic.
- [checked experimentaly] It seems that $D_{\beta,\gamma}(x+T)\approx D_{\beta,\gamma}(x)$ for large x and $T=\beta+\gamma.$