For $q \ge 1,a \ge 1$ integers $$q^{-s}\zeta(s,a/q) = \sum_{n=0}^\infty (qn+a)^{-s}= \sum_{n=1}^\infty c_n n^{-s}$$ is a Dirichlet series but it has no (Euler-like) product so there is no simple expression for its $\log$ and inverse.
Iff $a = 1$ then $c_1 =1\ne 0$ so that $$\frac{1}{q^{-s} \zeta(s,a/q)}= \frac{1}{1-(-\sum_{n=2}^\infty c_n n^{-s})}=1+\sum_{k=1}^\infty (-\sum_{n=2}^\infty c_n n^{-s})^k= 1+\sum_{k=1}^\infty\sum_{n= 2^k}^\infty b_{k,n} n^{-s}$$ is a Dirichlet series.
For $a \ne 1$ the inverse is a generalized Dirichlet series.
If $a/q \not \in \Bbb{Q}$ then both $\zeta(s,a/q), \frac{1}{\zeta(s,a/q)}$ are generalized Dirichlet series.
An analogue is defined via $R(s,x)$. See section 3.
– Alex R. May 28 '19 at 01:03