I would like to use the Gauss–Legendre method of order four (which is a particular Runge Kutta method) to solve numerically an ode but I find only it's Butcher Tableau and I fail to derive the method . You can find the Tableau here : https://en.wikipedia.org/wiki/List_of_Runge%E2%80%93Kutta_methods then search for Gauss-Legendre methods paragraph and it's the first tableau . using $$y_{n+1}=y_n + h \sum_{i=1}^s b_i k_i$$
with $$k_i=f(t_n+c_i h,y_n+ h \sum_{j=1}^s a_{ij}k_j)$$
I find for my tableau : $$y_{n+1}=y_n+\frac{h}{2} (k_1+k_2) $$ $$k_1=f(t_n+(\frac{1}{2}-\frac{\sqrt{3}}{6}) h,y_n+ \frac{h}{4} k_1 + (\frac{h}{4}+ \frac{h \sqrt{3}}{6}) k2)$$ $$k_2=f(t_n+(\frac{1}{2}+\frac{\sqrt{3}}{6}) h,y_n+ \frac{h}{4} k_2 + (\frac{h}{4}- \frac{h \sqrt{3}}{6}) k1)$$
using some substitution we can get : $$k_1=f(t_n+(\frac{1}{2}-\frac{\sqrt{3}}{6})h, \frac{1}{2}y_{n+1}+ \frac{1}{2} y_n + \frac{h \sqrt{3}}{6} k2)$$
there is this extra term $ \frac{h \sqrt{3}}{6} k2$ which I can't find any way to deal with. Any suggestion would be greatly appreciated .