Let $X\in S^3_+$ be a semidefinite cone. Show the explicit conditions on the components of $X$.
I wanted to show for a positive semidefenite matrix $X$ we have $z^T Xz\geq0\forall z$:
$$\begin{bmatrix} z_1& z_2& z_3 \end{bmatrix}\begin{bmatrix} x_1& x_2& x_3\\ x_2& x_4& x_5\\ x_3& x_5& x_6 \end{bmatrix}\begin{bmatrix} z_1\\ z_2\\ z_3 \end{bmatrix}=z_1^2x_1+2z_1z_2x_2+2z_1z_3x_3+z_2^2x_4+z_3z_2x_5+z_3^2x_6\geq 0 \forall z$$
This is the point where I am lost. I have seen people continue by assuming $x_1=0$ and deducing $x_2=x_3=0$ so that $X\succeq0$ iff $\begin{bmatrix} x_4& x_5\\ x_5& x_6\end{bmatrix}\succeq0$.
I am trying to understand the path I have started. Specifically, why is for the $x_1=0$ case we must have $x_2=x_3=0$? also, what about the $x_1\neq0$ case?