I have an optimization problem of the form
Max $x_1+x_2+x_3+\cdots+x_n$
subject to $x_0^2+x_1^2+x_2^2+\cdots+x_n^2+x_{12}^2+x_{13}^2+x_{14}^2+ \cdots+x_{1n}^2+x_{23}^2 + \cdots +x_{2n}^2+ \cdots +x_{n n-1}^2+x_{123}^2+\cdots+x_{12..n}^2=1$,
$x_0+x_1+x_2+\cdots+x_n+x_{12}+x_{13}$+$x_{14}+ \cdots +x_{1n}+x_{23}+ \cdots +x_{2n}+ \cdots +x_{n n-1}+x_{123}+ \cdots +x_{12..n}=1$,
where $x_0,x_1,x_2,\ldots,x_{123\ldots n}$ are unrestricted.
What is the upper bound for the cost function ..? Thank you.