$(f_n)$$_n$$_\in $$_\mathbb N$ is a sequence of functions where $f_n : [0,2\pi] \to \mathbb R$ $\ \forall n \in \mathbb N$. Find all values of $x \in [0,2\pi]$ such that $(f_n)$$_n$$_\in $$_\mathbb N$ converges and find pointwise limit if it exists.
(i) $f_n (x) = $sin$ (\frac{x}{n})$
(ii)$f_n (x) = $sin$ (nx)$
(iii)$f_n (x) = $sin$^n$ $(x)$
(i) This is easy to show: $lim_{n \to \infty} f_n(x) = f(x)$ where $f(x) = 0 \ \ \forall x \in [0,2\pi]$
So $f_n(x)$ converges $\forall x \in [0,2\pi]$
(ii) $f_n(x)$ converges if $x = 0, \pi, 2\pi$. And the pointwise limit is $f(x) = 0$ if $x = 0, \pi, 2\pi$
(iii) $$f_n(x) = \begin{cases} 0, & \text{if $x = 0, \pi, 2\pi$} \\[2ex] sin^n (x), & \text{if $x\neq 0, \pi, 2\pi$} \end{cases}$$
Then we have
$$\lim_{n \to \infty} f_n(x) = f(x) = \begin{cases} 0, & \text{if $x \neq \frac{3\pi}{2} $} \\[2ex] 1, & \text{if $x = \frac{\pi}{2}$} \\[2ex] Doesn't \ exist, & \text{if $x = \frac{3\pi}{2}$} \end{cases}$$
So $f_n(x)$ converges if $x \in [0, 2\pi]$ \ {$\frac{3\pi}{2}$}
$$$$
I somewhat feel that my answers for (ii) and (iii) are wrong.
Any comment / correction is appreciated