Which of the following statements are true?
- The matrices $ A=\left[ {\begin{array}{cc} 1 & 1 \\ 0 & 1\\ \end{array} } \right]$ and $ B=\left[ {\begin{array}{cc} 1 & 0 \\ 1 & 1\\ \end{array} } \right]$ are conjugate in $GL_2(\mathbb{R})$
- The matrices $ A=\left[ {\begin{array}{cc} 1 & 1 \\ 0 & 1\\ \end{array} } \right]$ and $ B=\left[ {\begin{array}{cc} 1 & 0 \\ 1 & 1\\ \end{array} } \right]$ are conjugate in $SL_2(\mathbb{R})$
- The matrices $ C=\left[ {\begin{array}{cc} 1 & 0 \\ 0 & 2\\ \end{array} } \right]$ and $ D=\left[ {\begin{array}{cc} 1 & 3 \\ 0 & 2\\ \end{array} } \right]$ are conjugate in $GL_2(\mathbb{R})$
I know the conjugate matrices have the same eigenvalues. But all of this matrices have the same eigenvalues. I am not sure how to determine that which matrices are conjugate to each other.