In solving problem sheets for my upcoming functional analysis $2$ exam I encountered the following statement:
Functions $u \in C^{0,1/2}(\mathbb{R}^n)$ satisfy $\|u\|_{C^0(\mathbb{R}^n)} < \infty$.
Here $C^{0,\alpha}(\mathbb{R}^n)$ denotes the space of Hölder continuous functions for $0 < \alpha \leq 1$, i.e. $$C^{0,\alpha} := \{f \in C^0(\mathbb{R}^n) : [f]_{C^{0,\alpha}} < \infty\}$$ where $$[f]_{C^{}0,\alpha} := \sup_{x,y \in \mathbb{R}^n,x\neq y} \frac{|f(x) - f(y)|}{|x - y|^\alpha}$$
What I tried: $$\|u\|_{C^0} = \sup_{x \in \mathbb{R}^n} |u(x)| \leq \sup_{x \in \mathbb{R}^n}|u(x) - u(y)| + |u(y)| \leq\sup_{x \in \mathbb{R}^n}|x - y|^{1/2} [u]_{C^{0,1/2}}+ |u(y)|$$ which does not help much