For the following square matrix:
$$ \left( \begin{array}{ccc} 3 & 0 & 1 \\ -4 & 1 & 2 \\ -6 & 0 & -2 \end{array} \right)$$
Decide which, if any, of the following vectors are eigenvectors of that matrix and give the corresponding eigenvalue.
$ \left( \begin{array}{ccc} 2 \\ 2 \\ -1 \end{array} \right)$ $ \left( \begin{array}{ccc} -1 \\ 0 \\ 2 \end{array} \right)$ $ \left( \begin{array}{ccc} -1 \\ 1 \\ 3 \end{array} \right)$ $ \left( \begin{array}{ccc} 0 \\ 1 \\ 0 \end{array} \right)$$ \left( \begin{array}{ccc} 3 \\ 2 \\ 1 \end{array} \right)$
If I've understood correctly, I must multiply the matrix by each vector first. If the result is a multiple of that vector, then it's an eigenvector. Only the fourth vector is so. But how should I calculate its corresponding eigenvalue?