If $S$ is invertible and $A$ a $n\times n$ matrix, how to prove that
$$Se^AS^{-1}=e^{SAS^{-1}}?$$
I used
$$e^{SAS^{-1}}=I+SAS^{-1}+\frac{(SAS^{-1})^2}{2!}+\cdots= S\left(I+A+\frac{A^2}{2!}+\cdots\right)S^{-1}=Se^AS^{-1}$$
Does it work or is there another way to prove this equality?