Computing the limit: $$ \lim\limits_{n\to +\infty}\left(\dfrac{1}{\sqrt{n^2 + 1}} + \dfrac{1}{\sqrt{n^2 + 2}} + \cdots + \dfrac{1}{\sqrt{n^2 + n}}\right).$$
I've tried taking:
We have $\lim\limits_{n\to +\infty}\left(\dfrac{1}{\sqrt{n^2 + 1}}\right) = \lim\limits_{n\to +\infty}\left(\dfrac{1}{\sqrt{n^2 + 2}}\right) = \ldots = \lim\limits_{n\to +\infty}\left(\dfrac{1}{\sqrt{n^2 + n}}\right) = 0.$
Then, we obtain $$ \lim\limits_{n\to +\infty}\left(\dfrac{1}{\sqrt{n^2 + 1}} + \dfrac{1}{\sqrt{n^2 + 2}} + \cdots + \dfrac{1}{\sqrt{n^2 + n}}\right)\\ = \lim\limits_{n\to +\infty}\left(\dfrac{1}{\sqrt{n^2 + 1}}\right) + \lim\limits_{n\to +\infty}\left(\dfrac{1}{\sqrt{n^2 + 2}}\right) + \cdots + \lim\limits_{n\to +\infty}\left(\dfrac{1}{\sqrt{n^2 + n}}\right) = 0.$$
Any other approach to this is welcome. Thanks!