I have the following optimization problem in $X \in \mathbb R^{r \times n}$
$$\begin{array}{ll} \text{minimize} & \| A - B X \|_F + \beta \, \mbox{Tr}(X^TCX)\\ \text{subject to} & X^T X = I_n\end{array}$$
where matrices $A \in \mathbb R^{m \times n}$, $B \in \mathbb R^{m \times r}$, $C \in \mathbb R^{r \times r}$ are given, and $r \ll \min(m,n)$. $A$ is a binary matrix, $C$ and $B$ are positive. $I$ is identity matrix. $\mbox{Tr}$ is the trace operator and $\beta > 0$. How to solve above optimization problem with equality constraint (e.g. orthogonal constraint). Can we use gradient descent or project gradient descent?
*one asterisk*for italics and**two asterisks**for bold. – Mar 07 '18 at 17:49