Let
- $\Omega\subseteq2^\Omega$
- $\mathcal S\subseteq2^\Omega$
- $E$ be a normed $\mathbb R$-vector space
- $\mu:\mathcal S\to E$
- $\nu:\mathcal S\to[0,\infty)$
Write $\mu\ll\nu$, if $$\forall\varepsilon>0:\exists\delta>0:\forall S\in\mathcal S:\nu(S)<\delta\Rightarrow\left\|\mu(S)\right\|_E<\varepsilon\tag1\;.$$
I want to show that if $\mathcal S$ is a $\sigma$-algebra and $\mu$ and $\nu$ are $\sigma$-additive, then $(1)$ is equivalent to $$\forall S\in\mathcal S:\nu(S)=0\Rightarrow\mu(S)=0\;.\tag2$$
Clearly, $(1)$ implies $(2)$. How can we show the other implication?