At a simple root of a sufficiently smooth $f$ you get quadratic convergence close to the root, that is $e_{n+1}\approx Ce_n^2$ if $e_n$ is small enough. At a multiple root or far away from a cluster of roots the convergence is linear, the worse the higher the multiplicity. You are to quantify this slow convergence.
Let $r$ be a root of multiplicity $m$. Then one can extract $m$ linear factors $(x-r)$ from $f$, so that $f(x)=(x-r)^mg(x)$, $g(r)\ne 0$, $g$ at least differentiable. Then $$f'(x)=m(x-r)^{m-1}g(x)+(x-r)^mg'(x)$$ and the Newton step gives
$$
x_{n+1}-r=x_n-r-\frac{(x_n-r)^mg(x_n)}{m(x_n-r)^{m-1}g(x_n)+(x_n-r)^mg'(x_n)}
\\~\\
=\frac{(m-1)g(x_n)+(x_n-r)g'(x_n)}{mg(x_n)+(x_n-r)g'(x_n)}(x_n-r)
$$
which implies, using $g(x_n)=g(r)+g'(r)e_n+...$
\begin{align}
e_{n+1}
&=\frac{(m-1)g(r)+me_ng'(r)+O(e_n^2)}{mg(r)+(m+1)e_ng'(r)+O(e_n^2)}e_n
\\[1em]
&=\frac{m-1}{m}\frac{m(m-1)g(r)+m^2e_ng'(r)+O(e_n^2)}{m(m-1)g(r)+(m-1)(m+1)e_ng'(r)+O(e_n^2)}e_n
\\[1em]
&=\frac{m-1}{m}\left(1+\frac{g'(r)+O(e_n)}{m(m-1)g(r)+O(e_n)}e_n\right)e_n
\\[1em]
&=\frac{m-1}{m}e_n+\frac{g'(r)}{m(m-1)g(r)}e_n^2+O(e_n^3)
\end{align}
which should lead directly to the claim of your task.