If $\alpha,\beta,\gamma$ are the roots of the cubic equation $px^3+3qx^2+3rx+s=0$ then find the value of $\sum \dfrac{1}{\beta+\gamma}$.
TRY:
We have $\sum \alpha=\dfrac{-3q}{p},\sum \alpha\beta =\dfrac{3r}{p},\alpha\beta\gamma=\dfrac{s}{p}.$
Now $\sum \dfrac{1}{\beta+\gamma}=\dfrac{1}{\alpha+\beta}+\dfrac{1}{\beta+\gamma}+\dfrac{1}{\gamma+\alpha}$.
But how to proceed from here? Please help.