So lets say we have a space curve $r=\langle\cos t,\sin t,3t\rangle$ and we need to find the curvature at the point $P(1,0,0)$
$r'(t)=\langle-\sin t,\cos t,3\rangle$
$r''(t)=\langle-\cos t,-\sin t,0\rangle$
$||r'(t)||=\sqrt{(-\sin t)^2+(\cos t)^2+(3)^2} = \sqrt{1+9} = \sqrt{10}$
$||r'(t)||^3=(\sqrt{10})^3=10\sqrt{10}$
$r'(t) \times r''(t)$ = $\langle3\sin t,-3\cos t,1\rangle$
$||r'(t) \times r''(t)|| = \sqrt{(3\sin t)^2+(-3\cos t)^2+1^2}=\sqrt{10}$
$k=\frac{||r(t) \times r''(t)||}{||r'(t)||^3}=\frac{\sqrt{10}}{10\sqrt{10}}=\frac{1}{10}$
Is this correct? I think that's all you need to do for the problem, right?
\sin,\cos,\langle,\rangle, and\times. – Theo Bendit Jul 27 '17 at 07:34